Current Topics for Research Internships or Bachelor Theses


Linear and Branched Polyurethanes with UV-Crosslinkable Sidegroups and Tunable Thermosensitivity

Degradable, non-toxic, and thermosensitive polymeric materials are highly interesting for (bio)medical applications.  In this context, segmented polyurethanes based on aliphatic diisocyanates, polyethylene glycol and functional chain extenders are a promising polymer class with tunable LCST behaviour. For many applications it is furthermore necessary, to subsequently crosslink these precursor polymers to yield thermosensitive hydrogels.

The scope of this research module is the synthesis of a UV-dimerizable dimethylmaleimide monomer and of linear and branched polyurethanes. By measuring and comparing intrinsic viscosity (capillary viscosimetry), hydrodynamic radius (DLS) and thermoresponsivity (turbidity) of the synthesized polymers, important structure-property relations can be investigated next. Finally, the gelation of these polyurethanes with differing architecture and chemical composition will be further tested.

Supervisor:                   Elena Stengelin and Katharina Breul (kabreul[a]
Time of posting:             03.08.2020
Start:                            As soon as possible


Dual-Dynamic Physical Networks
In the conventional polymer sciences, the mechanical properties of polymeric materials are engineered by manipulating different aspects of the chain architecture, such as the molar mass, branching, and chemical composition for thermoplastics, as well as the network microstructure in crosslinked gels. In contrast, in supramolecular polymers, the final properties are controlled through manipulation of non-covalent bonds, selected from a vast library with tunable association thermodynamics and kinetics. This approach is less demanding, since the bulk material can be tuned by varying small molecule components only, through the established molecule-to-material design concept. Recently, double network hydrogels have been developed based on the synergy of having two interpenetrating chemical networks, the first one highly crosslinked and the second one loosely crosslinked. At an optimal ratio of the two networks, the mechanical properties boost significantly, due to the ability for sacrificial breakage of the chemical bonds in the first network. This hierarchy of structure is a well-known trick in nature to achieve multi-facet function. A similar approach has been widely used in the design of supramolecular double-network hydrogels, where a brittle first chemical network is replaced by different types of reversible supramolecular assemblies. In this project, which can be a research module or a Bachelor thesis, we aim to mimic the structure of double-network hydrogels by hierarchical design of a dually crosslinked physical hydrogel. For this purpose, tetra-PEG building blocks with different molar masses will be functionalized by ligands with significantly different association tendencies. A network with diverse and tunable dynamics can be obtained by simultaneous introduction of metal ions with different complexation affinity. We will then to study the structure and dynamics of the resulting materials using static/dynamic light scattering and rheology.

Supervisor: Mostafa Ahmadi (ahmadi[a]
Time of posting: May 2019; possible start date: anytime




Stimuli-Responsive Supramolecular Hydrogels
Hydrogels are 3D network materials made of crosslinked hydrophilic polymer chains. Charged hydrogels have a high capacity for water uptake, up to 1000 times of their own weight; these materials are called superabsorbers and are commercially utilized in hygiene applications. Another class of hydrogels are supramolecular hydrogels in which hydrophilic polymer building blocks self-organize into a network by non-covalent bonds such as hydrogen bonding or ionic interactions. Due to the dynamic nature of these physical bonds, the sol–gel transition of supramolecular hydrogels can occur dependent on the environment such as temperature or pH. Therefore, different applications such as drug delivery, tissue engineering, and 3D printing can profit from them. This research project, which can be a Bachelor thesis or a research module, targets at combining the utility of both these types of hydrogels. Prototype samples will be fabricated by droplet-based microfluidics, and their water swelling capacity as well as their swelling/deswelling temperature range will be tuned by physical bonds and network architecture parameters.  The project involves both preparative polymer-chemistry aspects, for example, preparation of hydrophilic polymer backbones with non-covalent cross-linking motifs as side groups, and analytical polymer-physics work, for example, assessment of the gel-sample mechanics by rheology.

Supervisor: Amir Jangizehi (amir.jangizehi[a]
Time of posting: May 2019; possible start date: anytime






Responsive Double-Dynamic Polymer Networks and Gels
Double-dynamic networks are the latest state-of-the-art in the field of soft elastomers. These networks combine two dynamic modes within the same material, and this offers a wide spectrum of different functionalities from stimuli responsiveness to self-healing. Double-dynamic networks can comprise two interpenetrated networks with different properties or they can comprise one network with two different dynamic modes. To realize the second variant, we use star-shaped polymeric building blocks that are (i) grafted with thermoresponsive oligomers capable to undergo nano-phase-separation and that are (ii) capped by ligands capable of forming metal ion complexs. In a bachelor thesis or research module, you can prepare these gels and study their rheological characteristics under variation of temperature, length of the thermoresponsive polymer, and type of the metal ions.

Supervisor: Paola Nicolella (p.nicolella[a]
Time of posting: November 2019; possible startdate: anytime
Language: German/English




Evaluieren & Etablieren neuer Messmethoden am Konfokalmikroskop
Gegenwärtig werden in unserem Arbeitskreis unterschiedliche Untersuchungsmethoden eingesetzt, um bei uns synthetisierte Polymergele zu charakterisieren. Dieses Spektrum soll am Konfokalmikroskop um zwei weitere Verfahren erweitert werden, mit denen thermische sowie mechanische Einflüsse untersucht werden können. Im Rahmen der Entwicklung neuer Messzellen sind dabei unterschiedliche chemische Tests notwendig, das heißt es muss zum einen ermittelt werden für welche Substanzen bzw. Messbereiche die neuen Verfahren anwendbar sind und zum anderen muss aus chemischer Sicht die Anforderungsliste an das neue Equipment näher spezifiziert werden. Hierbei soll in enger Abstimmung mit unserem Laboringenieur an der Entwicklung des Messsetups gearbeitet werden. Interesse an technischen Messverfahren sowie Spaß am Umgang mit Messgeräten sind dabei wünschenswert.

Betreuung: Holger Adam  (hadam[a]
Stand: Mai 2019; Starttermin: jederzeit


Preparation of nanoparticular tracers for use in DLS- and FCS-microrheology
Passive microrheology is an excellent tool to probe the local mechanical properties of a polymer system on a micrometer length scale. The method uses micrometer-sized embedded tracers that locally deform the sample due to their Brownian motion. As a result, in contrast to classical macroscopic rheology, only small shear forces are applied that ensure a measurement in the linear viscoelastic regime. Also the accessible frequencies range up to the MHz-regime. This microrheology technique can be performed by use of dynamic light scattering (DLS) or fluorescence correlation spectroscopy (FCS). The intention of the project is to create tracers that can be used in both techniques due to good scattering and fluorescence properties. The starting point are citrate stabilized gold nanoparticles. The citrate ligands are then replaced by a bifunctional poly(ethylene glycol) to which a fluorescent dye is covalently bound. Remaining free reactive groups can be reacted with a capping agent to ensure the particle shell and the sample matrix to be free of interactions. Starting point of the research internship or Bachelor thesis will be the PEGylated particles that have to be further modified with a fluorescent dye and characterized by means of their fluorescence and scattering properties as well as the amount of dye on the particles.Within the scope of the research internship or Bachelor thesis, you can work on the preparation of such gold nanoparticles and gain  insight into several methods like fluorescence and UV–Vis spectroscopy, dynamic light scattering and fluorescence correlation spectroscopy.

Supervisor: Nora Fribiczer (nofribic[a]
Time of posting: Februar 2020; Starttermin: anytime



Posted on | Posted in Allgemein